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A fluid film squeezed between two parallel plane surfaces 

By E. A. HAMZA AND D. A. MAcDONALD 
Department of Applied Mathematics and Theoretical Physics, University of Liverpool 

(Received 27 July 1980 and in revised form 20 October 1980) 

We study the motion which results when a fluid film is squeezed between two parallel 
plane surfaces in relative motion. Particular attention is given to the special case 
where one surface is fixed and the other is rapidly accelerated from a state of rest to a 
state of uniform motion. The analysis is based in part on linear theory and in substance 
on a finite-difference analysis of the full nonlinear equations of motion. 

1. Introduction 
The fluid dynamics of a thin film of lubricant which is squeezed between two parallel 

plane surfaces has for long been recognized to be one of the most basic problems in 
lubrication theory. The earliest attempts at the problem can be traced to Stefan (1874) 
and to Reynolds (1886), both of whom confined their attention to the special case where 
inertial forces are negligible in comparison to viscous forces. 

The role played by inertia was first discussed by Jackson (1962); his error in the 
approximation of the inertia terms was repeated in the work of Kuzma, Maki & 
Donnelly (1964). Kuzma (1967) presented experimental results which compared 
favourably with the results of a correct first-order regular perturbation analysis in 
which the expansion parameter was the Reynolds number. Examination of the 
experimental results indicates, however, that far from being small the Reynolds 
numbers in the experiments range up to at least 60 (at which value the solution 
which is being perturbed, i.e. the classical lubrication approximation, is far from 
satisfactory). Later experimental evidence, relevant to the case of a stationary lower 
surface and an upper surface which is rapidly accelerated to a state of uniform motion, 
confirms the accuracy of regular perturbation theory for Reynolds numbers up to a t  
least 14 (Tichy & Winer 1970). 

The second-order perturbation solution was included in a wide-ranging study of 
the squeezed-film problem by Ishizawa (1966). Ishizawa drew attention to the rapid 
decrease in the magnitude of the universal functions which occur in the perturbation 
expansion and pointed to the obvious relevance of this property (for impulsive motion 
of the upper surface the expansion for the Stokes stream function F is of the form 

F = (ReT)ifi, 

where Re denotes the Reynolds number, T = 1 - t ,  where t denotes non-dimensional 
time, and the universal functions f i  depend only on z/T where z denotes the non- 
dimensional distance of separation of the planes at  time t ) .  The sixth-order pertur- 
bation solution given by MacDonald (1977) verified that for i in the range 1 < i < 5 

i = O  

Ifi+l/fil = o(10-2)- 
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Furthermore, the experimental results relate to the normal force on the upper surface 
and when this normal force is calculated by means of the regular perturbation solution 
it is seen that the contribution of the second-order term is roughly 0.005 (ReT) that 
of the first-order term. Thus for Re = 100 and for T not small the second- and higher- 
order corrections are significant. 

The regular perturbation solution essentially eliminates time from the governing 
partial differential equations and does not satisfy the initial condition which describes 
the manner in which squeezing is initiated. Thus in general there will be a transition 
period during which the regular perturbation solution will not accurately approximate 
the exact solution, regardless of the value of the Reynolds number. For the special 
case of a fixed lower surface and an upper surface which moves impulsively from rest 
to a constant velocity, the length of this transition period has been discussed by Jones & 
Wilson ( 1975). 

That there is a similarity solution to the governing equations in the special case 
where the distance of separation of the planes is proportional to (1  -/3t)t, where /3 
denotes an arbitrary constant, was first observed by Ishizawa (1966). His solution was 
re-discovered by Wang (1976). Both authors discuss the case where /3 < 0 and express 
reservations with the resulting numerical solution. 

In this paper we shall investigate the case of a lower surface which is fixed and an 
upper surface which is rapidly accelerated from a state of rest to a state of uniform 
motion. In  such circumstances the initial motion of the fluid is well approximated by 
a linear equation, whereas the subsequent motion is nonlinear and must be studied 
numerically. In  practice, lubrication bearings normally operate at  low Reynolds 
numbers, but for completeness we shall study flows for which the Reynolds numbers 
range from 0-5 to 96.0; particular attention will be given to the normal force (or load) 
which the fluid exerts on the (finite) upper surface and a comparison of the load 88 
predicted by the numerical and first-order perturbation solutions will be made. 

Rapid acceleration of the upper surface will result in rapid acceleration of the fluid, 
the driving force being the radial pressure gradient. Thus, in the early stages of the 
motion, there will exist thin layers of vorticity adjacent to both surfaces with an 
inviscid core in between. The time required for these layers to merge is of order t,, 
where 

t, = 2/Re + 1 - 2( 1 + Re)i/Re; 

Re is here based on the velocity to which the upper surface is accelerated and on the 
initial separation of the surfaces. Near to the start of the motion and near to the end 
the normal force exerted on the upper surface will be large when compared with the 
average normal force exerted during the motion, the large value being necessary in the 
former case in order to overcome fluid inertia and in the latter case to overcome the 
viscous force exerted on the outward-moving fluid. 

2. Formulation 
The geometry with which we shall be concerned is that of two parallel planesurfaces 

which initially are separated by a film of lubricant of thickness H. We shall assume 
that the lower surface is fixed and that for 0 < t* < t,* the upper surface is in motion in 
the direction of its inward-drawn normal (t: denotes the time at  which collision would 
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FIQURE 1. System configuration at time 1 (co-ordinate scheme inset). 

occur). We select polar co-ordinates r*, 8*, z* in terms of which the lower surface is 
described by z* = 0 and the upper surface by z*/H = h(t*V/H),  where V denotes a 
representative velocity and h(0) = 1. We assume that the velocity of the upper surface 
is given by - Vg(t*V/H),  where g ( [ )  > 0, > 0, so that its position at time t* is 
described by 

We non-dimensionslize all lengths with respect to H, all velocities with respect to V, 
time with respect to H /  V and pressure with respect to  pV2, where p denotes density. 
The dimensionless co-ordinates and associated velocity components we denote by 
r ,  8, z and u, v ,  w respectively; t and p denote dimensionless time and pressure. 
The configuration is sketched in figure 1. 

The mass conservation equation is satisfied by a stream function F(z , t )  which is 
such that 

so that the non-dimensional momentum equations may be expressed in the form 

where Re = V H / v .  Further, equations ( 2 . 1 )  and ( 2 . 2 )  show that p is of the form 

P = 8 r 2 W  + P,(Z, t ) ,  

whence differentiation of ( 2 . 1 )  with respect to z and use of the transformation of 
variables 

leads to the equation 
?/ = z / h ( t ) ,  7 = t/Re (2.3) 

(2.4) W e 7 )  (Reg(Re7) [!IF,,, + 2 4 / / / 1 -  2 R e F 4 / / / , /  + w e  7) Fvr,) = Fg//,,? 
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The boundary conditions under which (2 .4)  is to be integrated are 
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In  the special case where g ( t )  = 1 for all t > 0, (2.4) and (2.5) reduce to the equations 
given by Jones & Wilson (1975) who considered the upper surface to move impulsively 
with constant velocity at time t = 0. Impulsive motion of the upper surface is possible 
only when the normal force exerted on the surface is infinite at  t = 0,  this feature being 
evident from the initial condition relevant to impulsive motion (Jones & Wilson 1975) 

F = Sy, 7 = 0+, y + 0, 1. (2.6) 

To examine, for all T > 0, the fluid dynamics corresponding to large finite acceleration 
from a state of rest it is necessary to impose the initial condition 

F = O ,  7 = 0 .  (2 .6a)  

If F,(y,7) and F,(y,7) denote, respectively, the solutions of (2 .4)  corresponding to 
impulsive and rapid accelerations then it can be shown that for 7 > 78, where 0 < r8< 1, 
the maximum of 1 Fi - F,I can be made arbitrarily small by imposing sufficiently rapid 
acceleration. In our numerical work we shall, therefore, start theintegrationof (2.4) at 
T = 78 and predict the value of F at 7s by use of the impulsive motion solution. Further 
details on this matter are presented in 0 4.1. 

If the upper surface is assumed to be a disk of (non-dimensional) radius a and of 
negligible thickness the resultant normal force, or load, W, is given by 

w = IOU 2nr[p(r, h, t )  -pol dr, 

wherep(r, h, t )  denotes the pressure at radial position r onthe underside of the disk and 
po denotes the pressure on the upper side. The requirement that the fluid velocity 
component normal to the disk is zero at  the edge of the disk implies that ap/az is there 
equal to zero and that p = po; thus the above result may be expressed in the form 

3. Approximate analytic results 
Approximate analytic results can be obtained for the special cases where 

(i) Re < 1 and (ii) 0 c t < 1. 

Case Re < 1 

This case corresponds to the regular perturbation solution referred to in 0 1. The terms 
of the perturbation expansion can readily be derived from the equation 

a3F 1 a4F 
2 F - =  -- a3F 

ZG- az3 Re 824' 

which results when p is eliminated from equations (2.1) and (2.2). The leading term is 

Fo = 'I2(# - 7) g ( t ) ,  'I = z / W .  ( 3 4  
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The approximation obtained when the left-hand side of (3.1) is evaluated by means of 
(3 .2)  corresponds to the first-order perturbation solution. The normal force on the 
upper surface as computed from this approximation shows good agreement with the 
experimental results over a range of Reynolds numbers extending to at least 60 .  

C a s e O < t < l  

For an upper surface which is impulsively accelerated from a state of rest to a state of 
uniform motion the distance to which vorticity will have diffused in time t is O ( ( t / R e ) i )  
i.e. O ( d ) .  Within this distance the change in the radial velocity profile is O( 1) so that 
.Fur, for example, is O(7-i). An order-of-magnitude analysis performedonequation (2.4) 
now shows that for R e d  = o( 1) it approximates to 

which equation is to be solved subject to conditions (2.5), (2 .6 ) .  With obvious qualifi- 
cation, the above is equally true in the case of a rapidly accelerated upper surface. 
Within the range in which (2.4) approximates to ( 3 . 3 )  it is to be expected that the 
regular perturbation solution will not be in gQod agreement with the exact solution. 

For the case where g(t )  = I for all t > 0 Jones & Wilson (1975) have used the method 
of separation of variables to obtain the solution for F in the form of an infinite series 
which is slowly convergent for 0 < 7 1. Here, we employ the Laplace transformation 
to obtain a solution which is rapidly convergent for T -+ 0. From (3 .3 ) ,  (2 .6 )  and (2 .6 ) ,  
with g(t )  replaced by 1, we find that 

where 

and 

A corresponding expression can be derived for the radial pressure gradient; this result 
may be employed to estimate the accuracy of the regular perturbation solution close 
to the start of the motion. 
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4. Numerical solution of equation (2.4) 

perturbation solution to (3.1) is of the form 
When the upper surface is in motion with constant velocity the nth-order regular 

i = O  

where the universal functions fi are such that for 0 < i < 5 If i+l / f i l  = 0(10-2) 
(MacDonald 1977). Thus for Re = O( 108) or larger and (1 - t) not small F will change 
appreciably as the order of the approximation changes. To test the accuracy of the 
perturbation solution over a wide range of Reynolds numbers and to obtain reliable 
information on the flow characteristics over this range a numerical solution of the 
governing nonlinear equation is necessary. 

4.1. Starting the solution 

Rapid acceleration of the upper surface from a state of rest to a state of uniform 
motion will, for small t ,  result in the formation of layers of concentrated vorticity 
adjacent to the boundaries. As there is a limit to the fineness of the mesh which is 
employed in the numerical scheme there will always exist a time range, close to the 
start of motion, within which it is not possible to obtain numerical results which 
accurately approximate the fluid velocity in these layers. In  the limiting cam of 
impulsive motion of the upper surface theinitial condition for the integration of (2.4) is 
that 

F = ?jy, 7 = 0+, y + 0,1, 

and indeed when (2.4) is integrated subject to this condition it is found that when t is 
small the resulting solution is inaccurate near the boundaries. An alternative to 
starting the solution at  7 = 0 is to start at 7 = r8, where 0 c r8 4 1, and to employ as 
initial condition that value of F (F, say) which is predicted by equation (3.4); for 
7 2 7, and for sufficiently rapid acceleration this solution, which is known to be 
accurate for Re 74 = o( l) ,  differs little from that corresponding to finite acceleration. 
This is the procedure which we followed; thus (2.4) was integrated subject to the 
condition 

F = F,(y), 7 = 7 8 ,  (4.1) 

where Rer! = o(1). Further details relevant to the initial motion are presented in 
5 4.3. 

4.2. The numerical scheme 
We employ an implicit finite-difference scheme of the Crank-Nicolson type. On the 
y axis we select uniformly spaced mesh points at yi = ih, i = 0,1, ..., (m+ l) ,  where 
(m+ 1)h = 1 .  F will be evaluated at the times rj =jk, j = 1,2, ..., (n- 1), nk = l/Re, 
and we shall denote the value of F at the mesh point (y i ,  rj) by Fi. Central difference 
formulae are employed for the approximation of the differences in the y direction and 
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a forward difference formula is used for the derivative in the 7 direction. For example, 
we find that 

F{+2 - 4Fi+1+ 6Ft - 4F{-1+ F t - 2  

i h4 = 

The Crank-Nicolson approximation scheme is now applied to equation (2.4). Thus 
all terms of the equation, other than F,,,-which is approximated directly as given 
above - are replaced by the mean of their values on thejth and ( j  + 1)th time rows. The 
result is rn equations of the form 

5 5 

s=1 s= 1 
FIf+l) 2 ,$+I) FI$+:ls + 2 b$+l) F$$$l)s = c$j+l), i = 1,2, . . ., m, (4.2) 

where the coefficients &+l, bL+l, c(+l are defined in terms of h, k,  Re, &(7, + 7,+1) and the 
values of FLl, Fi, ..., FL+, (the values FL1 and F&+2 follow from the boundary 
conditions F,, = 0, y = 0, y = I).  We select 10h = l/2[, where 2 is an integer 80 that 
(10 x 21 - 1) nonlinear algebraic equations must be solved. The boundary conditions 
(2.5)give,forj = 0,1, ..., (n-1), 

Fd = 0, FL+l = &, FLl = F{, FL+, = FL. 

The algebraic equations were solved by use of the Newton-Raphson iterative 
technique. 

4.3. Computational detail8 
The calculations were performed on a CDC 7600 machine which retained 15 significant 
figures. The range of Reynolds numbers studied was 0.5 < Re < 96 and results were 
compiled for 7 in the range 7s < 7 < l /Re.  (7, varied with Re, being, for example, 0.02 
at  Re = 0.5 and 0*0005 at Re = 20). For fixed Re, accuracy was checked by comparing 
the results for two consecutive 1 values- the range of 1 varying from 1 at the lower 
Reynolds numbers to 3 at the higher. For 1 = 1 k was selected to  be 0.000625 so that  
the stability parameter klh2 was 0-25. For 1 = 2, k was taken to be 0.000078125 and 
the stability parameter was 0.125. The initial condition (4.1) was checked by com- 
paring the numerical value of F at small T with the value predicted by equation (3.4). 

The radial pressure gradient is specified by the equation which results when (2.1) is 
transformed according to (2.3). For small values of 7, however, the finite-difference 
representation of ( l / r )  appr  as obtained from this equation is unsatisfactory owing 
to inaccurate finite-difference approximations to derivatives which occur in the 
equation. It is preferable, therefore, to note that since ( l / r )  ap/ar is independent of y 
the transformed version of equation (2.1) may be multiplied by y( 1 - y) and integrated 
over the y range to yield the equation 

in which k = h(Re7) and g = g(Re7). 



154 E.  A .  H m m  and D.  A .  MacDonald 

5. Results and discussion 
We discuss the case of an upper surface which is rapidly accelerated from a state of 

rest to a state of uniform motion, the direction of motion being towards a lower surface 
which is at rest. Close to the start of the motion the vorticity layers adjacent to both 
boundaries are thin and the flow field is largely inviscid, the inviscid velocity distri- 
bution being specified, when gf ( t )  is not large, by 

u- ap - =-=-- 
r az 2h(t)’  

where g(t)  and h(t) respectively denote the speed of the moving surface and its distance 
of separation from the lower surface. 

Rapid acceleration of the upper surface results in rapid acceleration of the fluid, this 
being achieved by the radial pressure gradient, which does work to overcome fluid 
inertia and frictional resistance; indeed, since ap/ar is independent of z ,  the radial 
pressure gradient can be specified by the equation 

which results when the radial momentum equation is integrated with respect to z.  
It is of interest to examine the case where 

g ( t )  = erfc a/tt,  0 < 01 < 1. (5.2) 

In  this case an order-of-magnitude analysis performed on equation (5.1) shows that for 
a / t t  = O( 1) or larger the dominant term on the right-hand side of (5.1) is the inertial 
term +g’(t)/h(t) which is O(ae-a*/ t / tS) .  On the other hand, for a/t* = o( 1) 

i.e. when the diffusion length (t/Re)* is O(a/ta)  the contribution due to frictional 
resistance is equal inimportance to that due to fluid inertia (but when (t/Re)t = o(a / t t ) ,  
i.e. when Re B 1, frictional resistance is outweighed by inertial resistance). Indeed, 
as the surfaces approach one another inertial resistance becomes negligible in com- 
parison to frictional resistance since the vorticity layers adjoining the surfaces will 
merge and the stream function F(z, t )  will tend to the classical lubrication value 
F&t) (the manner in which F -+ Fo is, of course, dependent on Re). In such circum- 
stances, replacement of u / r  by aFo/az in (5.1) shows that 

inertial resistance 
frictional resistance 

= O(Re ( 1  - t ) ) .  

For given Re, we may thus distinguish three distinct phases in the radial pressure 
gradient development: in phase one - ( l / r )  ap/ar rapidly increases in value and 
resistance to motion is due primarily to fluid inertia; in phase two - ( l / r )  aplar rapidly 
decreases in value, the rate of change of fluid inertia is much reduced and the resistance 
due to friction assumes importance; in phase three - ( l / r )  aplar again increases in 
value (tending to infinity as t -+ 1) and the resistance due to friction outweighs that 
due to inertia. Frictional resistance will decrease with increase of Re, whereas inertial 
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FIQURE 2. Normal force, or load, on a disk of radius a aa a function of time t .  -, Re = 0-5; 
- - - - -  , Re = 5.0; --- , Re = 20.0; ----; Re = 48.0; --- , Re = 96.0. 

resistance will not; thus the minimum value of - ( l / r )  a ~ / &  will decrease with increase 
of Re. The time, tm, at which the minimumvalueof - ( 1 / ~ )  8p/&occursisdependenton 
Re but is always close to the start of motion, when frictional resistance is not dominant. 
Our numerical results indicate that there is a finite, non-zero, Reynolds number for 
which tm is a maximum but the prediction of this maximum value and the Reynolds 
number at which it occurs is not a straightforward numerical task. The best estimate 
which could be obtained waa that the maximum value of t,, is approximately 0.058 
and that this occurs at a Reynolds number of about 11.8 (note that (Bet)+ = 0.83 so 
that the results obtained from the linearized analysis based on equation (3.3) are not 
reliable). 

In  the case of an upper surface in the shape of a disk of radius a, the normal force on 
the disk may be evaluated by use of equation (2.7). It is of interest to compare the 
results obtained when the radial pressure gradient in (2.7) is obtained from: (i) the 
numerical solution and (ii) the first-order regular perturbation solution. For Reynolds 
numbers of 0.5, 5-0, 20.0,48.0, 96-0 and for values oft in the range 0.1 d t d 0-96 this 
comparison is made in table 1 .t The table shows that for Reynolds numbers up to 20 
the agreement for values oft in the range 0- 1 < t Q 0.96 is very good. For Re = 48 the 
agreement is acceptable, being to within ten per cent but  by Re = 96 a discrepancy of 
almost fifteen per cent can be observed at  the lower values oft. Table 2 compares the 
two solutions for 0.0175 d t Q 0.16. Within this range of t the classical lubrication 

t The resiilts quoted in tables 1 and 2 and figires 2-5 are those rolevant to the c u e  of 
impulsive motion. 
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FIGURE 3. Radial velocity profile development with time t :  Re = 5.0. ---, t = 0.035; ---, 
t = 0.36; -.-.., t = 0.66; ----, t = 0.9; ---, t = 0.94; - , t = 0.96. 

u/r  
FIGURE 4. Radial velocity profile development with time t :  Re = 48.0. ---, t = 0.035; ---, 

t = 0.36; _ _ _ _ _  , t = 0.66; ----, t = 0.9; - - - -  1 = 0.94; - , 1 = 0.96. 

approximation to ( 1 / r )  @/a. is - (6/Re) (1  - t)-S, so that at  Re = 0.5 both sets of 
results do not differ appreciably from the classical lubrication result, whereas for 
Re 2 5.0 they do. For Re = 96 the percentage error in the quoted values of ( l / r )  ap/ar 
decreases as t increases to 0-035 but thereafter it increases to reach 14.3% at 
t = 0.16. Figure 2 presents the load variation with t for a range of Reynolds numbers 
extending to Re = 96. The figure indicates that for values oft not too close to zero the 
load on the disk decreases with increase of Re. Expressed in dimensional terms, this 
result states that if V and H are held constant (so that the time scale H / V  remains 



160 2. A .  Ham= and D. A .  MmDonald 

0 2 4 6 8 10 12 14 16 18 20 

u/r 

FIGURE 5. Radial velocity profile development with time t :  Re = 96.0. ---, t = 0.035; ---, 
t = 0.36; _ _ _ _ _  , = 0.66; ----, t = 0.9; ---, t = 0.94; - , t = 0.96. 

constant) a decrease in kinematic viscosity will result in a decrease in the load on the 
disk. 

It is worth while to compare the numerical solution for the radial pressure gradient 
with the result obtained from equation (4.3) and the solution to the linearized 
equation (3.3). Forarangeof Reynoldsnumbers extendingto Re = 96, this comparison 
is made in table 3. The table demonstrates the remarkable agreement between the 
two approximate solutions. 

An elementary calculation based on the diffusion length (t/Re)t shows that the 
vorticity layers adjacent to the boundaries will merge in a time of order t,, where 

t, = 2/Re + 1 - 2( 1 + Re)g/Re; 

thus for Re 4 1 t, - )Re + O(Re2), whereas for Re 9 1 tm - 1 - 2/Ret. The influence of 
Reynolds number on the rate at which vorticity diffuses from the boundaries can be 
gauged from figures 3, 4 and 5 which present radial velocity profiles for Reynolds 
numbers of 5.0, 48.0 and 96.0 respectively. 
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